Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Front Immunol ; 15: 1373367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633244

RESUMO

Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTIs) in the U.S. as well as more serious invasive diseases, including bacteremia, sepsis, endocarditis, surgical site infections, osteomyelitis, and pneumonia. These infections are exacerbated by the emergence of antibiotic-resistant clinical isolates such as methicillin-resistant S. aureus (MRSA), highlighting the need for alternatives to antibiotics to treat bacterial infections. We have previously developed a multi-component toxoid vaccine (IBT-V02) in a liquid formulation with efficacy against multiple strains of Staphylococcus aureus prevalent in the industrialized world. However, liquid vaccine formulations are not compatible with the paucity of cold chain storage infrastructure in many low-to-middle income countries (LMICs). Furthermore, whether our IBT-V02 vaccine formulations are protective against S. aureus isolates from LMICs is unknown. To overcome these limitations, we developed lyophilized and spray freeze-dried formulations of IBT-V02 vaccine and demonstrated that both formulations had comparable biophysical attributes as the liquid formulation, including similar levels of toxin neutralizing antibodies and protective efficacy against MRSA infections in murine and rabbit models. To enhance the relevancy of our findings, we then performed a multi-dimensional screen of 83 S. aureus clinical isolates from LMICs (e.g., Democratic Republic of Congo, Palestine, and Cambodia) to rationally down-select strains to test in our in vivo models based on broad expression of IBT-V02 targets (i.e., pore-forming toxins and superantigens). IBT-V02 polyclonal antisera effectively neutralized toxins produced by the S. aureus clinical isolates from LMICs. Notably, the lyophilized IBT-V02 formulation exhibited significant in vivo efficacy in various preclinical infection models against the S. aureus clinical isolates from LMICs, which was comparable to our liquid formulation. Collectively, our findings suggested that lyophilization is an effective alternative to liquid vaccine formulations of our IBT-V02 vaccine against S. aureus infections, which has important implications for protection from S. aureus isolates from LMICs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Camundongos , Coelhos , Staphylococcus aureus , Países em Desenvolvimento , Antibacterianos , Vacinas Bacterianas , Toxoides
3.
Front Cell Infect Microbiol ; 12: 876898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923804

RESUMO

Staphylococcus aureus osteomyelitis remains a very challenging condition; recent clinical studies have shown infection control rates following surgery/antibiotics to be ~60%. Additionally, prior efforts to produce an effective S. aureus vaccine have failed, in part due to lack of knowledge of protective immunity. Previously, we demonstrated that anti-glucosaminidase (Gmd) antibodies are protective in animal models but found that only 6.7% of culture-confirmed S. aureus osteomyelitis patients in the AO Clinical Priority Program (AO-CPP) Registry had basal serum levels (>10 ng/ml) of anti-Gmd at the time of surgery (baseline). We identified a small subset of patients with high levels of anti-Gmd antibodies and adverse outcomes following surgery, not explained by Ig class switching to non-functional isotypes. Here, we aimed to test the hypothesis that clinical cure following surgery is associated with anti-Gmd neutralizing antibodies in serum. Therefore, we first optimized an in vitro assay that quantifies recombinant Gmd lysis of the M. luteus cell wall and used it to demonstrate the 50% neutralizing concentration (NC50) of a humanized anti-Gmd mAb (TPH-101) to be ~15.6 µg/ml. We also demonstrated that human serum deficient in anti-Gmd antibodies can be complemented by TPH-101 to achieve the same dose-dependent Gmd neutralizing activity as purified TPH-101. Finally, we assessed the anti-Gmd physical titer and neutralizing activity in sera from 11 patients in the AO-CPP Registry, who were characterized into four groups post-hoc. Group 1 patients (n=3) had high anti-Gmd physical and neutralizing titers at baseline that decreased with clinical cure of the infection over time. Group 2 patients (n=3) had undetectable anti-Gmd antibodies throughout the study and adverse outcomes. Group 3 (n=3) had high titers +/- neutralizing anti-Gmd at baseline with adverse outcomes. Group 4 (n=2) had low titers of non-neutralizing anti-Gmd at baseline with delayed high titers and adverse outcomes. Collectively, these findings demonstrate that both neutralizing and non-neutralizing anti-Gmd antibodies exist in S. aureus osteomyelitis patients and that screening for these antibodies could have a value for identifying patients in need of passive immunization prior to surgery. Future prospective studies to test the prognostic value of anti-Gmd antibodies to assess the potential of passive immunization with TPH-101 are warranted.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Animais , Anticorpos Neutralizantes , Hexosaminidases , Humanos , Projetos Piloto , Estudos Prospectivos , Staphylococcus aureus
4.
MAbs ; 14(1): 2083467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35730685

RESUMO

Staphylococcus aureus carries an exceptional repertoire of virulence factors that aid in immune evasion. Previous single-target approaches for S. aureus-specific vaccines and monoclonal antibodies (mAbs) have failed in clinical trials due to the multitude of virulence factors released during infection. Emergence of antibiotic-resistant strains demands a multi-target approach involving neutralization of different, non-overlapping pathogenic factors. Of the several pore-forming toxins that contribute to S. aureus pathogenesis, efforts have largely focused on mAbs that neutralize α-hemolysin (Hla) and target the receptor-binding site. Here, we isolated two anti-Hla and three anti-Panton-Valentine Leukocidin (LukSF-PV) mAbs, and used a combination of hydrogen deuterium exchange mass spectrometry (HDX-MS) and alanine scanning mutagenesis to delineate and validate the toxins' epitope landscape. Our studies identified two novel, neutralizing epitopes targeted by 2B6 and CAN6 on Hla that provided protection from hemolytic activity in vitro and showed synergy in rodent pneumonia model against lethal challenge. Of the anti-LukF mAbs, SA02 and SA131 showed specific neutralization activity to LukSF-PV while SA185 showed cross-neutralization activity to LukSF-PV, γ-hemolysin HlgAB, and leukotoxin ED. We further compared these antigen-specific mAbs to two broadly neutralizing mAbs, H5 (targets Hla, LukSF-PV, HlgAB, HlgCB, and LukED) and SA185 (targeting LukSF-PV, HlgAB, and LukED), and identified molecular level markers for broad-spectrum reactivity among the pore-forming toxins by HDX-MS. To further underscore the need to target the cross-reactive epitopes on leukocidins for the development of broad-spectrum therapies, we annotated Hla sequences isolated from patients in multiple countries for genomic variations within the perspective of our defined epitopes.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Anticorpos Monoclonais , Proteínas de Bactérias/química , Epitopos , Exotoxinas , Proteínas Hemolisinas , Humanos , Leucocidinas/química , Fatores de Virulência
5.
Front Immunol ; 13: 893921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655774

RESUMO

Staphylococcus aureus has been acquiring multiple drug resistance and has evolved into superbugs such as Methicillin/Vancomycin-resistant S. aureus (MRSA/VRSA) and, consequently, is a major cause of nosocomial and community infections associated with high morbidity and mortality for which no FDA-approved vaccines or biotherapeutics are available. Previous efforts targeting the surface-associated antigens have failed in clinical testing. Here, we generated hyperimmune products from sera in rabbits against six major S. aureus toxins targeted by an experimental vaccine (IBT-V02) and demonstrated significant efficacy for an anti-virulence passive immunization strategy. Extensive in vitro binding and neutralizing titers were analyzed against six extracellular toxins from individual animal sera. All IBT-V02 immunized animals elicited the maximum immune response upon the first boost dose against all pore-forming vaccine components, while for superantigen (SAgs) components of the vaccine, second and third doses of a boost were needed to reach a plateau in binding and toxin neutralizing titers. Importantly, both anti-staphylococcus hyperimmune products consisting of full-length IgG (IBT-V02-IgG) purified from the pooled sera and de-speciated F(ab')2 (IBT-V02-F(ab')2) retained the binding and neutralizing titers against IBT-V02 target toxins. F(ab')2 also exhibited cross-neutralization titers against three leukotoxins (HlgAB, HlgCB, and LukED) and four SAgs (SEC1, SED, SEK, and SEQ) which were not part of IBT-V02. F(ab')2 also neutralized toxins in bacterial culture supernatant from major clinical strains of S. aureus. In vivo efficacy data generated in bacteremia and pneumonia models using USA300 S. aureus strain demonstrated dose-dependent protection by F(ab')2. These efficacy data confirmed the staphylococcal toxins as viable targets and support the further development effort of hyperimmune products as a potential adjunctive therapy for emergency uses against life-threatening S. aureus infections.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Pneumonia , Animais , Imunoglobulina G/farmacologia , Camundongos , Coelhos , Staphylococcus aureus , Superantígenos
6.
Microorganisms ; 9(5)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069873

RESUMO

In 1880, the Scottish surgeon Sir Alexander Ogston first described staphylococci in pus from a surgical abscess in a knee joint: "The masses looked like bunches of grapes" [...].

7.
Front Immunol ; 12: 624310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777005

RESUMO

Staphylococcus aureus causes a wide range of diseases from skin infections to life threatening invasive diseases such as bacteremia, endocarditis, pneumonia, surgical site infections, and osteomyelitis. Skin infections such as furuncles, carbuncles, folliculitis, erysipelas, and cellulitis constitute a large majority of infections caused by S. aureus (SA). These infections cause significant morbidity, healthcare costs, and represent a breeding ground for antimicrobial resistance. Furthermore, skin infection with SA is a major risk factor for invasive disease. Here we describe the pre-clinical efficacy of a multicomponent toxoid vaccine (IBT-V02) for prevention of S. aureus acute skin infections and recurrence. IBT-V02 targets six SA toxins including the pore-forming toxins alpha hemolysin (Hla), Panton-Valentine leukocidin (PVL), leukocidin AB (LukAB), and the superantigens toxic shock syndrome toxin-1 and staphylococcal enterotoxins A and B. Immunization of mice and rabbits with IBT-V02 generated antibodies with strong neutralizing activity against toxins included in the vaccine, as well as cross-neutralizing activity against multiple related toxins, and protected against skin infections by several clinically relevant SA strains of USA100, USA300, and USA1000 clones. Efficacy of the vaccine was also shown in non-naïve mice pre-exposed to S. aureus. Furthermore, vaccination with IBT-V02 not only protected mice from a primary infection but also demonstrated lasting efficacy against a secondary infection, while prior challenge with the bacteria alone was unable to protect against recurrence. Serum transfer studies in a primary infection model showed that antibodies are primarily responsible for the protective response.


Assuntos
Reinfecção/prevenção & controle , Infecções Cutâneas Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/farmacologia , Staphylococcus aureus/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Modelos Animais de Doenças , Feminino , Imunização , Imunogenicidade da Vacina , Masculino , Camundongos Endogâmicos BALB C , Coelhos , Reinfecção/imunologia , Reinfecção/microbiologia , Infecções Cutâneas Estafilocócicas/imunologia , Infecções Cutâneas Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/imunologia
8.
Front Immunol ; 12: 621754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717122

RESUMO

Staphylococcus aureus is a leading cause of significant morbidity and mortality and an enormous economic burden to public health worldwide. Infections caused by methicillin-resistant S. aureus (MRSA) pose a major threat as MRSA strains are becoming increasingly prevalent and multi-drug resistant. To this date, vaccines targeting surface-bound antigens demonstrated promising results in preclinical testing but have failed in clinical trials. S. aureus pathogenesis is in large part driven by immune destructive and immune modulating toxins and thus represent promising vaccine targets. Hence, the objective of this study was to evaluate the safety and immunogenicity of a staphylococcal 4-component vaccine targeting secreted bi-component pore-forming toxins (BCPFTs) and superantigens (SAgs) in non-human primates (NHPs). The 4-component vaccine proved to be safe, even when repeated vaccinations were given at a dose that is 5 to 10- fold higher than the proposed human dose. Vaccinated rhesus macaques did not exhibit clinical signs, weight loss, or changes in hematology or serum chemistry parameters related to the administration of the vaccine. No acute, vaccine-related elevation of serum cytokine levels was observed after vaccine administration, confirming the toxoid components lacked superantigenicity. Immunized animals demonstrated high level of toxin-specific total and neutralizing antibodies toward target antigens of the 4-component vaccine as well as cross-neutralizing activity toward staphylococcal BCPFTs and SAgs that are not direct targets of the vaccine. Cross-neutralization was also observed toward the heterologous streptococcal pyogenic exotoxin B. Ex vivo stimulation of PBMCs with individual vaccine components demonstrated an overall increase in several T cell cytokines measured in supernatants. Immunophenotyping of CD4 T cells ex vivo showed an increase in Ag-specific polyfunctional CD4 T cells in response to antigen stimulation. Taken together, we demonstrate that the 4-component vaccine is well-tolerated and immunogenic in NHPs generating both humoral and cellular immune responses. Targeting secreted toxin antigens could be the next-generation vaccine approach for staphylococcal vaccines if also proven to provide efficacy in humans.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Infecções Estafilocócicas/imunologia , Toxoide Estafilocócico/imunologia , Vacinas Antiestafilocócicas/imunologia , Animais , Anticorpos Antibacterianos/sangue , Formação de Anticorpos , Anticorpos Amplamente Neutralizantes/sangue , Imunidade Heteróloga , Imunogenicidade da Vacina , Ativação Linfocitária , Macaca mulatta , Superantígenos/imunologia , Vacinação
9.
J Infect Dis ; 221(2): 267-275, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31504652

RESUMO

Staphylococcus aureus is a common pathogen causing infections in humans with various degrees of severity, with pneumonia being one of the most severe infections. In as much as staphylococcal pneumonia is a disease driven in large part by α-hemolysin (Hla) and Panton-Valentine leukocidin (PVL), we evaluated whether active immunization with attenuated forms of Hla (HlaH35L/H48L) alone, PVL components (LukS-PVT28F/K97A/S209A and LukF-PVK102A) alone, or combination of all 3 toxoids could prevent lethal challenge in a rabbit model of necrotizing pneumonia caused by the USA300 community-associated methicillin-resistant S. aureus (MRSA). Rabbits vaccinated with Hla toxoid alone or PVL components alone were only partially protected against lethal pneumonia, whereas those vaccinated with all 3 toxoids had 100% protection against lethality. Vaccine-mediated protection correlated with induction of polyclonal antibody response that neutralized not only α-hemolysin and PVL, but also other related toxins, produced by USA300 and other epidemic MRSA clones.


Assuntos
Toxinas Bacterianas/imunologia , Exotoxinas/imunologia , Proteínas Hemolisinas/imunologia , Leucocidinas/imunologia , Pneumonia Necrosante/prevenção & controle , Pneumonia Estafilocócica/prevenção & controle , Animais , Toxinas Bacterianas/administração & dosagem , Modelos Animais de Doenças , Exotoxinas/administração & dosagem , Proteínas Hemolisinas/administração & dosagem , Humanos , Leucocidinas/administração & dosagem , Staphylococcus aureus Resistente à Meticilina , Pneumonia Necrosante/imunologia , Pneumonia Estafilocócica/imunologia , Coelhos , Vacinação
10.
Toxins (Basel) ; 11(6)2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207937

RESUMO

Staphylococcus aureus (SA) infections cause high mortality and morbidity in humans. Being central to its pathogenesis, S. aureus thwarts the host defense by secreting a myriad of virulence factors, including bicomponent, pore-forming leukotoxins. While all vaccine development efforts that aimed at achieving opsonophagocytic killing have failed, targeting virulence by toxoid vaccines represents a novel approach to preventing mortality and morbidity that are caused by SA. The recently discovered leukotoxin LukAB kills human phagocytes and monocytes and it is present in all known S. aureus clinical isolates. While using a structure-guided approach, we generated a library of mutations that targeted functional domains within the LukAB heterodimer to identify attenuated toxoids as potential vaccine candidates. The mutants were evaluated based on expression, solubility, yield, biophysical properties, cytotoxicity, and immunogenicity, and several fully attenuated LukAB toxoids that were capable of eliciting high neutralizing antibody titers were identified. Rabbit polyclonal antibodies against the lead toxoid candidate provided potent neutralization of LukAB. While the neutralization of LukAB alone was not sufficient to fully suppress leukotoxicity in supernatants of S. aureus USA300 isolates, a combination of antibodies against LukAB, α-toxin, and Panton-Valentine leukocidin completely neutralized the cytotoxicity of these strains. These data strongly support the inclusion of LukAB toxoids in a multivalent toxoid vaccine for the prevention of S. aureus disease.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas , Leucocidinas/imunologia , Infecções Estafilocócicas/prevenção & controle , Toxoides/imunologia , Animais , Proteínas de Bactérias/genética , Sobrevivência Celular , Escherichia coli/genética , Feminino , Células HL-60 , Humanos , Leucocidinas/genética , Camundongos Endogâmicos ICR , Monócitos , Células THP-1 , Toxoides/genética
11.
Sci Rep ; 9(1): 3279, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824769

RESUMO

Superantigens (SAgs) play a major role in the pathogenesis of Staphylococcus aureus and are associated with several diseases, including food poisoning, bacterial arthritis, and toxic shock syndrome. Monoclonal antibodies to these SAgs, primarily TSST-1, SEB and SEA have been shown to provide protection in animal studies and to reduce clinical severity in bacteremic patients. Here we quantify the pre-existing antibodies against SAgs in many human plasma and IVIG samples and demonstrate that in a major portion of the population these antibody titers are suboptimal and IVIG therapy only incrementally elevates the anti-SAg titers. Our in vitro neutralization studies show that a combination of antibodies against SEA, SEB,and TSST-1 can provide broad neutralization of staphylococcal SAgs. We report a single fusion protein (TBA225) consisting of the toxoid versions of TSST-1, SEB and SEA and demonstrate its immunogenicity and protective efficacy in a mouse model of toxic shock. Antibodies raised against this fusion vaccine provide broad neutralization of purified SAgs and culture supernatants of multiple clinically relevant S. aureus strains. Our data strongly supports the use of this fusion protein as a component of an anti-virulence based multivalent toxoid vaccine against S. aureus disease.


Assuntos
Enterotoxinas/toxicidade , Proteínas Recombinantes de Fusão/farmacologia , Toxoide Estafilocócico/farmacologia , Staphylococcus aureus , Superantígenos/toxicidade , Animais , Enterotoxinas/química , Enterotoxinas/genética , Enterotoxinas/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Toxoide Estafilocócico/química , Toxoide Estafilocócico/genética , Toxoide Estafilocócico/imunologia , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Superantígenos/química , Superantígenos/genética , Superantígenos/imunologia
12.
Toxins (Basel) ; 10(9)2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231498

RESUMO

Cytolytic pore-forming toxins including alpha hemolysin (Hla) and bicomponent leukotoxins play an important role in the pathogenesis of Staphylococcus aureus. These toxins kill the polymorphonuclear phagocytes (PMNs), disrupt epithelial and endothelial barriers, and lyse erythrocytes to provide iron for bacterial growth. The expression of these toxins is regulated by the two-component sensing systems Sae and Agr. Here, we report that a point mutation (L18P) in SaeS, the histidine kinase sensor of the Sae system, renders the S. aureus Newman hemolytic activity fully independent of Hla and drastically increases the PMN lytic activity. Furthermore, this Hla-independent activity, unlike Hla itself, can lyse human erythrocytes. The Hla-independent activity towards human erythrocytes was also evident in USA300, however, under strict agr control. Gene knockout studies revealed that this Hla-independent Sae-regulated activity was entirely dependent on gamma hemolysin A subunit (HlgA). In contrast, hemolytic activity of Newman towards human erythrocytes from HlgAB resistant donors was completely dependent on agr. The culture supernatant from Newman S. aureus could be neutralized by antisera against two vaccine candidates based on LukS and LukF subunits of Panton-Valentine leukocidin but not by an anti-Hla neutralizing antibody. These findings display the complex involvement of Sae and Agr systems in regulating the virulence of S. aureus and have important implications for vaccine and immunotherapeutics development for S. aureus disease in humans.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas Hemolisinas/fisiologia , Proteínas Quinases/fisiologia , Staphylococcus aureus/patogenicidade , Animais , Toxinas Bacterianas , Eritrócitos/fisiologia , Hemólise , Humanos , Camundongos , Pneumonia , Virulência
13.
Vaccine ; 34(50): 6402-6407, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27847174

RESUMO

Alpha hemolysin (Hla) is a pore-forming toxin produced by most Staphylococcus aureus isolates. Hla is reported to play a key role in the pathogenesis of staphylococcal infections, such as skin and soft tissue infection, pneumonia, and lethal peritonitis. This study makes use of a novel recombinant subunit vaccine candidate (AT62) that was rationally designed based on the Hla heptameric crystal structure. AT62 comprises a critical structural domain at the N terminus of Hla, and it has no inherent toxic properties. We evaluated the efficacy of AT62 in protection against surgical wound infection and skin and soft tissue infection. Mice were vaccinated on days 0, 14, and 28 with 20µg AT62 or bovine serum albumin (BSA) mixed with Sigma adjuvant system®. Mice immunized with AT62 produced a robust antibody response against native Hla. In the surgical wound infection model, mice immunized with AT62 and challenged with a USA300 S. aureus strain showed a significantly reduced bacterial burden in the infected tissue compared to animals given BSA. Similarly, mice passively immunized with rabbit IgG to AT62 showed reduced wound infection and tissue damage. Subcutaneous abscess formation was not prevented by immunization with AT62. However, in a skin necrosis infection model, immunization with the AT62 vaccine resulted in smaller lesions and reduced mouse weight loss compared to controls. Although AT62 immunization reduced tissue necrosis, it did not reduce the bacterial burdens in the lesions compared to controls. Our data indicate that AT62 may be a valuable component of a multivalent vaccine against S. aureus.


Assuntos
Toxinas Bacterianas/imunologia , Proteínas Hemolisinas/imunologia , Infecções dos Tecidos Moles/prevenção & controle , Infecções Estafilocócicas/prevenção & controle , Vacinas Antiestafilocócicas/imunologia , Infecção dos Ferimentos/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Modelos Animais de Doenças , Feminino , Imunização Passiva , Imunoglobulina G/sangue , Camundongos Endogâmicos BALB C , Vacinas Antiestafilocócicas/administração & dosagem , Vacinas Antiestafilocócicas/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
14.
Clin Vaccine Immunol ; 23(12): 918-925, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27707765

RESUMO

Staphylococcus aureus produces several enterotoxins and superantigens, exposure to which can elicit profound toxic shock. A recombinant staphylococcal enterotoxin B (rSEB) containing 3 distinct mutations in the major histocompatibility complex class II binding site was combined with an alum adjuvant (Alhydrogel) and used as a potential parenteral vaccine named STEBVax. Consenting healthy adult volunteers (age range, 23 to 38 years) participated in a first-in-human open-label dose escalation study of parenteral doses of STEBVax ranging from 0.01 µg up to 20 µg. Safety was assessed by determination of the frequency of adverse events and reactogenicity. Immune responses to the vaccination were determined by measurement of anti-staphylococcal enterotoxin B (anti-SEB) IgG by enzyme-linked immunosorbent assay and a toxin neutralization assay (TNA). Twenty-eight participants were enrolled in 7 dosing cohorts. All doses were well tolerated. The participants exhibited heterogeneous baseline antibody titers. More seroconversions and a faster onset of serum anti-SEB IgG toxin-neutralizing antibodies were observed by TNA with increasing doses of STEBVax. There was a trend for a plateau in antibody responses with doses of STEBVax of between 2.5 and 20 µg. Among the participants vaccinated with 2.5 µg to 20 µg of STEBVax, ∼93% seroconverted for SEB toxin-neutralizing antibody. A strong correlation between individual SEB-specific serum IgG antibody titers and the neutralization of gamma interferon production was found in vitro STEBvax appeared to be safe and immunogenic, inducing functional toxin-neutralizing antibodies. These data support its continued clinical development. (This study has been registered at ClinicalTrials.gov under registration no. NCT00974935.).


Assuntos
Anticorpos Antibacterianos/sangue , Enterotoxinas/genética , Enterotoxinas/imunologia , Imunogenicidade da Vacina , Vacinas Antiestafilocócicas/efeitos adversos , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Adulto , Anticorpos Antibacterianos/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Relação Dose-Resposta Imunológica , Ensaio de Imunoadsorção Enzimática , Feminino , Voluntários Saudáveis , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Masculino , Proteínas Recombinantes/imunologia , Vacinas Antiestafilocócicas/administração & dosagem , Adulto Jovem
15.
J Immunol Methods ; 430: 33-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826278

RESUMO

An electrochemiluminescent (ECL)-based multiplex immunoassay using Meso-Scale Discovery (MSD) technology was developed for detecting antibody response toward 10 Staphylococcus aureus (S. aureus) exotoxins. These 10 antigens included three different groups of toxins: 1) single component pore-forming toxins such as alpha- and delta-hemolysins, 2) the bicomponent pore-forming toxin Panton-Valentine leukocidin (PVL), comprised of LukS-PV and LukF-PV subunits, and 3) enterotoxin/superantigens - Staphylococcal enterotoxins A (SEA), B (SEB), C1 (SEC1), D (SED), K (SEK) and Toxic shock syndrome toxin-1 (TSST-1). Assay development included optimization steps with a conventional SEB ELISA-based serological assay and then optimized parameters were transferred and re-optimized in a singleplex ECL format. Finally, two pentaplex solid-phase ECL formats were developed. As proof of concept, one set of pentaplex ECL data was compared with conventional ELISA results. During the assay development controls were screened and developed for both the singleplex and multiplex assays. ECL-based multiplex assays were more sensitive with a wide dynamic range and proved more time-efficient than conventional ELISAs. Using the newly developed ECL method we showed, for the first time, that delta-hemolysin toxin can induce an immune response as antibody titers could be detected.


Assuntos
Anticorpos Antibacterianos/sangue , Toxinas Bacterianas/imunologia , Imunoensaio/métodos , Imunoglobulina G/sangue , Medições Luminescentes/métodos , Staphylococcus aureus/imunologia , Proteínas de Bactérias/imunologia , Enterotoxinas/imunologia , Exotoxinas/imunologia , Proteínas Hemolisinas/imunologia , Humanos , Leucocidinas/imunologia , Superantígenos/imunologia
17.
PLoS One ; 10(9): e0137874, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367030

RESUMO

S. aureus vaccine development has proven particularly difficult. The conventional approach to achieve sterile immunity through opsonophagocytic killing has been largely unsuccessful. S. aureus is highly toxigenic and a great body of evidence suggests that a successful future vaccine for this organism should target extracellular toxins which are responsible for host tissue destruction and immunosuppression. Major staphylococcal toxins are alpha toxin (a single subunit hemolysin) along with a group of bicomponent pore-forming toxins (BCPFT), namely Panton-Valentine leukocidin (PVL), gamma hemolysins (HlgCB and AB), LukAB and LukED. In our previous report, an attenuated mutant of LukS-PV (PVL- S subunit) named as "LukS-mut9" elicited high immunogenic response as well as provided a significant protection in a mouse sepsis model. Recent discovery of PVL receptors shows that mice lack receptors for this toxin, thus the reported protection of mice with the PVL vaccine may relate to cross protective responses against other homologous toxins. This manuscript addresses this issue by demonstrating that polyclonal antibody generated by LukS-mut9 can neutralize other canonical and non-canonical leukotoxin pairs. In this report, we also demonstrated that several potent toxins can be created by non-canonical pairing of subunits. Out of 5 pairs of canonical and 8 pairs of non-canonical toxins tested, anti-LukS-mut9 polyclonal antibodies neutralized all except for LukAB. We also studied the potential hemolytic activities of canonical and noncanonical pairs among biocomponent toxins and discovered that a novel non-canonical pair consisting of HlgA and LukD is a highly toxic combination. This pair can lyse RBC from different species including human blood far better than alpha hemolysin. Moreover, to follow-up our last report, we explored the correlation between the levels of pre-existing antibodies to new sets of leukotoxins subunits and clinical outcomes in adult patients with S. aureus bacteremia. We found that there is an inversed correlation between the antibody titer to sepsis for leukotoxins LukS-mut9, LukF-PV, HlgC, LukE and LukAB, suggesting the risk of sepsis was significantly lower in the patients with higher antibody titer against those toxins.


Assuntos
Proteínas de Bactérias/imunologia , Leucocidinas/imunologia , Vacinas Antiestafilocócicas/imunologia , Staphylococcus aureus/imunologia , Adulto , Animais , Anticorpos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/toxicidade , Reações Cruzadas , Testes Imunológicos de Citotoxicidade , Exotoxinas/genética , Exotoxinas/imunologia , Exotoxinas/toxicidade , Feminino , Humanos , Leucocidinas/genética , Leucocidinas/toxicidade , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Testes de Neutralização , Coelhos , Infecções Estafilocócicas/microbiologia , Vacinas Antiestafilocócicas/farmacologia , Staphylococcus aureus/patogenicidade , Vacinas Atenuadas/imunologia
18.
Toxins (Basel) ; 6(3): 950-72, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24599233

RESUMO

Staphylococccus aureus represents one of the most challenging human pathogens as well as a common colonizer of human skin and mucosal surfaces. S. aureus causes a wide range of diseases from skin and soft tissue infection (SSTI) to debilitating and life-threatening conditions such as osteomyelitis, endocarditis, and necrotizing pneumonia. The range of diseases reflects the remarkable diversity of the virulence factors produced by this pathogen, including surface antigens involved in the establishment of infection and a large number of toxins that mediate a vast array of cellular responses. The staphylococcal toxins are generally believed to have evolved to disarm the innate immune system, the first line of defense against this pathogen. This review focuses on recent advances on elucidating the biological functions of S. aureus bicomponent pore-forming toxins (BCPFTs) and their utility as targets for preventive and therapeutic intervention. These toxins are cytolytic to a variety of immune cells, primarily neutrophils, as well as cells with a critical barrier function. The lytic activity of BCPFTs towards immune cells implies a critical role in immune evasion, and a number of epidemiological studies and animal experiments relate these toxins to clinical disease, particularly SSTI and necrotizing pneumonia. Antibody-mediated neutralization of this lytic activity may provide a strategy for development of toxoid-based vaccines or immunotherapeutics for prevention or mitigation of clinical diseases. However, certain BCPFTs have been proposed to act as danger signals that may alert the immune system through an inflammatory response. The utility of a neutralizing vaccination strategy must be weighed against such immune-activating potential.


Assuntos
Toxinas Bacterianas/imunologia , Citotoxinas/imunologia , Proteínas Citotóxicas Formadoras de Poros/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus , Animais , Toxinas Bacterianas/metabolismo , Citotoxinas/metabolismo , Humanos , Imunoterapia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Subunidades Proteicas/imunologia , Subunidades Proteicas/metabolismo , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/terapia , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade
19.
PLoS One ; 8(6): e65384, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762356

RESUMO

Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL), gamma hemolysins (Hlg), and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens.


Assuntos
Bacteriemia/imunologia , Bacteriemia/prevenção & controle , Proteínas de Bactérias/imunologia , Leucocidinas/imunologia , Staphylococcus aureus/imunologia , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos/farmacologia , Aminoácidos , Animais , Anticorpos Neutralizantes/farmacologia , Bacteriemia/microbiologia , Carga Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/química , Toxinas Bacterianas/imunologia , Reações Cruzadas/efeitos dos fármacos , Modelos Animais de Doenças , Desenho de Fármacos , Exotoxinas/imunologia , Imunização , Leucocidinas/química , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Homologia de Sequência de Aminoácidos , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Vacinas Atenuadas/química , Vacinas de Subunidades Antigênicas/química
20.
J Infect Dis ; 206(6): 915-23, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22807524

RESUMO

BACKGROUND: Staphylococcus aureus has numerous virulence factors, including exotoxins that may increase the severity of infection. This study was aimed at assessing whether preexisting antibodies to S. aureus toxins are associated with a lower risk of sepsis in adults with S. aureus infection complicated by bacteremia. METHODS: We prospectively identified adults with S. aureus infection from 4 hospitals in Baltimore, MD, in 2009­2011. We obtained serum samples from prior to or at presentation of S. aureus bacteremia to measure total immunoglobulin G (IgG) and IgG antibody levels to 11 S. aureus exotoxins. Bacterial isolates were tested for the genes encoding S. aureus exotoxins using polymerase chain reaction (PCR). RESULTS: One hundred eligible subjects were included and 27 of them developed sepsis. When adjusted for total IgG levels and stratified for the presence of toxin in the infecting isolate as appropriate, the risk of sepsis was significantly lower in those patients with higher levels of IgG against α-hemolysin (Hla), δ-hemolysin (Hld), Panton Valentine leukocidin (PVL), staphylococcal enterotoxin C-1 (SEC-1), and phenol-soluble modulin α3 (PSM-α3). CONCLUSIONS: Our results suggest that higher antibody levels against Hla, Hld, PVL, SEC-1, and PSM-α3 may protect against sepsis in patients with invasive S. aureus infections.


Assuntos
Anticorpos Antibacterianos/sangue , Exotoxinas/imunologia , Sepse/microbiologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Adulto , Idoso , Proteínas de Bactérias/imunologia , Estudos de Coortes , Feminino , Hospitalização , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco , Sepse/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA